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Using polystyrene as an example, we have demonstrated that the use of an elastic potential of 
the power type provides a satisfactory description of the dependence of stress on strain for various 
type of the stress state of a viscoelastic liquid in flow. 

INTRODUCTION 

The problem of a quantitative description of the rubber-like properties of 
polymers is extensively discussed in the scientific and technical literature on 
cured elastomers. The importance of this problem is shown by the fact that 
the dependence of the stress on strain in various deformations is the basic 
characteristic of the mechanical properties of these materials. 

It is well known' that the stress-strain relationships for various loading 
conditions cannot be arbitrary since they must satisfy the requirement of 
invariance. The general method for the fulfillment of this requirement is the 
use of an elastic potential W, which is represented as a function of the invari- 
ants of the strain tensor. Various forms of the elastic potential have been 
proposed in the literature. Of these the Mooney-Rivlin two-constant equa- 
tion is most widely used. With an appropriate choice of the constants it 
satisfactorily describes the dependence of stress on the extension ratio in 
uniaxial elongation, which is why this equation is extensively employed and 
the elucidation of the physical significance of its constants has been the sub- 
ject of considerable effort. Much less attention has been paid to the fact that 
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in the case of simple shear this formula predicts a strictly linear relation 
between the shear stress, T, and the amount of shear, E.  This relation is 

t = 2(C, +C2)E ( 1 )  
where C ,  and C, are the empirical constants of the Mooney-Rivlin equation, 
and the value 2(C,  + C,) must have the meaning of a constant shear modulus, 
but, in fact, depends on c. The generally adopted way for improving the 
agreement between theoretical prediction and experiment consists in using 
many-term equations for the elastic potential incorporating an ever increas- 
ing number of constants which are arbitrarily varied. Thus, generally speaking, 
it is possible to describe experimental data with any degree of accuracy. But 
the success is achieved at a high cost because of the complicated calculations, 
the ambiguity of the choice of the constants and the lack of physical meaning 
of the analytical expressions used. 

Of special interest in this respect is the so-called n-measure of strain, 
proposed by some authors (for the history of the problem, see Ref. 2) and 
widely used by Blatz, Sharda and T ~ c h o e g l , ~ . ~  and Bloch, Chang and 
Tschoegl.’ This two-constant potential is written in the form 

W = (2G/n2)(Al + A; + A! - 3) ( 2 )  

where G is the zero-shear modulus, n is an empirical constant and the Ai are 
the principal extension ratios. 

This formulation of W satisfies the invariance requirement since the 
principal values of the finite-strain tensor may be regarded as the invariants 
of that tensor. In this formula W refers, as usual, to the initial (undeformed) 
state since W = 0 if all the li are equal to unity. 

Equation (2) for W resembles the well known power law expression for the 
dependence of the apparent viscosity on the shear rate or the corresponding 
invariant form of the dependence of the energy dissipation on the invariants 
of the rate-of-strain tensor. This leads one to attempt to use Eq. (1) for des- 
cribing the rubber-like properties of polymer melts and solutions, especially 
as i t  is known that these properties are also nonlinear in shear6 and, hence, 
are not described by equations such as the Mooney-Rivlin equation, for 
example, with its linear relationship (1). 

Before we consider concrete analytical dependences and compare them 
with experiment, it is necessary to make one remark. For cured (non-fluid 
and non-relaxing) elastomers the elastic potential W expresses their equilib- 
rium properties. The deformation of polymer solutions and melts is invariably 
associated with dissipative losses in flow. Therefore, the possibility of des- 
cribing their behavior with the aid of an elastic potential remains contro- 
versial from the physical viewpoint. The controversy is underlined by the 
fact that in measurements of the elastic after-effect in fluid media there also 
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takes place a partial dissipation of the stored elastic energy. Nevertheless, 
such measurements give unambiguous results. In this respect, the concept of 
the elastic potential may be considered to be a useful (though, possibly, 
formal) method of generalizing experimental data obtained for polymer 
melts and solutions under various deformations. The use of this concept is 
based on the assumption that each steady flow state with its rate of deforma- 
tion is associated with the structure of the material, which is retained for an 
indefinitely long time, and in this sense may be regarded as being in quasi- 
equilibrium. In this case, the behavior of the liquid under steady-state flow 
conditions may be described by two 'equilibrium' functions-the flow curve, 
which characterizes the flow properties, and the elastic potential which 
characterizes its rubber-like properties. 

THEORY 

The elastic potential must, in general, be represented as a function of the 
invariants of the strain tensor. If the material is incompressible (this assump- 
tion is quite valid for polymer solutions and melts), then there are two such 
invariants. The role of the invariants can be played, for example, by two of the 
principal extension ratios. The third invariant (i.e., the third principal exten- 
sion ratio) is automatically eliminated through the condition that 

I ,&& = 1. (3) 
If the function W(I,) is known, we can calculate the stress-strain relations 

for any loading geometry. Thus, the stress ni which corresponds to the 
elongation I i ,  is expressed by 

Of interest to the present discussion are two principal loading schemes: 
uniaxial tension and simple shear. The first is characterized by the magnitude 
of the equilibrium reversible elongation K ;  the second is characterized by the 
magnitude of the equilibrium elastic shear deformation E.  These quantities are 
used to express the invariants of the strain tensor-the principal elongations. 
For uniaxial tension the principal values are 

For simple shear the principal values are expressed in terms of E by 

I ,  = t anx;  I ,  = cotx;  = 1 (6) 

where the angle x is related to the amount of shear E by the equation6 

x = (1/2)arctan(2/~). (7) 
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Note that the shear stress t, which is the basic force characteristic of the state 
of stress in simple shear, is expressed in terms of W as 

t = dW/dE. (8) 

The equations given above yield the basic relationships expressing the 
dependence of stress on strain under various modes of deformation if the 
form of the elastic potential W(1,) is known. For the elastic potential (2) the 
difference between the principal stresses cOr and aa, which correspond to the 
extension ratios 1, and Aa, is given by 

It is not difficult to derive the following equations for the dependence U ( K )  

for uniaxial tension 

(10) ~7 = (2G/n)(rc" - K - " ' ~ )  

and the dependence 7(~) for simple shear 

( J 4 T i ? + E ) " - - ( J ; l + T - & ) "  
2G 

2% J ~ + E ~  
t =  

Now let us find the "initial" values of the elastic modulus in uniaxial tension, 
E , ,  and in simple shear, Go.  These quantities are determined in the following 
manner : 

E - lim a/(.-1) (12) 

Go = lim (TIE) (13) 

O - x+l 

E + O  

It is evident that Go -= G, i.e. G has the meaning of the initial shear modulus, 
and in the limiting case of infinitesimal strains there is fulfilled the standard 
relationship, which is common to all incompressible bodies : E ,  = 3G0. 

Using Eq. (13) we can write Eqs. (10) and (11) in the following manner: 

and 
t&n c 

~ = - - - r ( J T x + E ) " - ( J 4 n - E ) "  2G0 2"J4+c 

The left hand sides of these expressions exactly correspond to the left hand 
side of Eq. (9), and the right hand sides correspond to the right hand side of 
the same equation. If we now denote the left hand sides of Eqs. (14) and (15) 
by Y and the right hand sides by X, then the dependence Y ( X )  must be 
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LARGE DEFORMATIONS OF POLYMERS IN FLOWS 5 

invariant to the form of the state of stress, provided, of course, that the 
potential (2) correctly represents the elastic deformation. Therefore a plot of 
the experimental data obtained through the use of different experimental 
schemes on a single graph in the coordinates Y and X and their coincidence 
would be the criterion for the validity of the form of the elastic potential for 
any material. Experimental testing of this conclusion is the central task of 
the present work. 

EXP E R I M E NTAL 

For experiments we used a commercial sample of atactic polystyrene with a 
wide molecular mass distribution because this material clearly displays 
pronounced non-linear properties both in shear and in extension. The 
viscosity-average molecular mass of the sample is 3 x lo5. The experiments 
were carried out at 130 and 150°C. The main difficulty was associated with the 
choice of a sample that could be tested over a sufficiently wide range of 
deformation rates both in shear and in uniaxial tension. 

The experiments under the condition of uniaxial tension were conducted at  
various constant velocity gradients leadifig to steady-state flow conditions. 
These flow conditions can be attained for polystyrene ; the relevant details of 
the experiment can be found in Ref. 7 where the results of various measure- 
ments made under the conditions of uniaxial tension are given. 

The measurements in simple shear were carried out in a shear plastometer 
described in Ref. 8. The measurement error in all cases did not exceed f 10 
percent. The results of measurements of the dependences a(~) and T ( E )  are 
given in Figures 1 and 2, respectively. 

For the experimental data to be represented in invariant form it is necessary 
to know in advance the value of the exponent n. This difficulty can, however, 
be circumvented if use is made of the results of measurements over the range 
of values of E greater than 1.15 and K greater than 2.25, which does not limit 
the range of measurements too severely. In this case, Eqs. (14) and (15) may 
be given in the following approximate form : 

(16) 
3a 

log- = nlogK-logn 
2EO 

= n log( $77 +&)- [(n - 1) log 2 +log n] (1 7) 
tJm 

log Go 

The form of the above expressions suggests a graphical method for the deter- 
mination of the constant n by constructing a plot of log a against log K 

and/or a plot of log (T JG2) against log (e + E ) .  This treatment of 
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FIGURE 1 
deformation (from the lower points to the upper ones) at 130 and 15OC, 
0.275; 0.74; 1 . 1  1 ; 2.0; 2.98; 4.56; 5.7; 12 (for 150°, only). 

Dependence of stress on the extension ratio in uniaxial extension. Rates of 
s - ' :  0.137: 
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FIGURE 2 Dependence of shear stress on elastic deformation in simple shear. Rates of shear 
(from the lower points to the upper ones), x lo-', s - ' ;  at 130°C: 0.0083; 0.032; 0.1; 0.147; 
0.152; 0.24; at 150°C: 0.046; 0.155; 0.525; 3.16; 12; 15,8;  126. 
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FIGURE 3 Invariant representation of experimental data on the dependence of stress on 
strain in uniaxial extension and in simple shear. The letter Y represents the left hand sides of 
formulas (14) and (I  5 )  and X, the right hand sides of the same formulas. The numerical data are 
the same as in Figures 1 and 2. 

the experimental data for a(.) and Z ( E )  gave the same value of n, namely 
n = 2.9 k0.05. This value does not depend on the rate of deformation, as the 
points in Figures 1 and 2 correspond to different rates of extension and shear. 
Now, knowing the value of n, we can make use of Eqs. (14) and (15); the 
experimental data can then be given in invariant form in the coordinates Y 
and X .  This is done in Figure 3. 

As seen, the use of the potential (2)  enables one to attain an excellent 
agreement between the invariant representation of experimental data on 
shear and extension over a wide range of deformation rates and elastic 
deformations. This proves the applicability of the elastic potential given by 
Eq. (2) for a quantitative description of elastic deformations stored during 
the flow of polymers. 
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